ARI MA方法依据的基本思想是:将预测对象随时间推移而形成的数据序列视为一个随机序列,即除去个别的因偶然原因引起的观测值外,时间序列是一组依赖于时间t的随机变量。这组随机变量所具有的依存关系或自相关性表征了预测对象发展的延续性,而这种自相关性一旦被相应的数学模型描述出来,就可以从时间序列的过去值及现在值预测未来值。第一阶段:要利用自相关分析和偏自相关分析等方法,分析时间序列的随机性、平稳性及季节性,并选定一个特定的模型以拟合所分析的时间序列数据。尽管以上三个过程相互关联,但每一种预测过程均可以单独进行预 ......